Systemic Framework for
Enterprise Architecture & Transformation

Modularity

Introduction

e This document is an integral component of the SysFEAT architectural framework. It provides foundations
to address the challenges posed by Enterprise Architecture in the 21st century, which include :

Increasing complexity in system structures and behaviors.
Growing intricacy in architecture, management and governance of these systems.

The mission of the framework is to de_mystigy these complexities, ensuring they are comprehensible to a broad
audience, thereby facilitating the design' and management of complex-syStems across all scales, from micro-systems
to enterprise level systems.

e Enterprise Modeling refers to the overarching language and conceptual framework used to describe,
understand, and communicate the complex structures and dynamics of an enterprise.

e It integrates both the operating aspects of the enterprise (how it functions and interacts within its
ecosystem), the transformational aspects (how it evolves and sustains over time through initiatives, asset
management) and how these transformations are governed to ensure effectiveness, efficiency and
reliability.

e The following slides present the foundations of enterprise modeling.

SysFEAT-ModelingFramework-00-Poster.pdf

Foundations of enterprise modeling

e Modularity provides the syntax for building robust,
manageable, and scalable architectures, based on the
principles of compositionality and packaging.

e Semantic provides robust capabilities for classifying and
composing entities, from time-bound entities (individuals) to
families of concepts, enabling effective representation of
meaning.

e The Systemic Operating Framework (SOF) serves as the
overarching language that describes why and how a system
operates and interacts within its ecosystems.

e Abstractions organizes systems and concepts in degree of
abstractions, including systemic levels and conceptualization
levels.

e Enterprise Domains formalize the various disciplines that
make-up EA, ranging from enterprise road-mapping to
System ArcDevOps.

e Agility and System Thinking ensure that the enterprise
evolves and sustains over time through governed initiatives,

architected for flexibility and responsiveness in complex and
dynamic business environments.

I
1
1
1
1
[}
1
1
\

Upper Ontology

Q0
e

Modularity Semantic

Abstractions

Conceptualization Systemic
Levels Levels

e =

Systemic Ontology

t*

Enterprise Domains

Agility and System Thinking

Enterprise Ontology
& Transformation

N\
-~ ———————

SysFEAT-ModelingFramework-01-Modularity.pdf
SysFEAT-ModelingFramework-01-Modularity.pdf
../../pages/36166b8c6157b6b4.htm
../../pages/f0fd779f65a18c5d.htm
SysFEAT-ModelingFramework-02-Semantic.pdf
SysFEAT-ModelingFramework-02-Semantic.pdf
../../pages/4df9512266826e23.htm
../../pages/328b396566e32468.htm
SysFEAT-ModelingFramework-10-SOF.pdf
../../pages/02af0a4b5a182417.htm
SysFEAT-ModelingFramework-11-Abstraction.pdf
SysFEAT-ModelingFramework-11-Abstraction.pdf
SysFEAT-ModelingFramework-12-SystemicLevels.pdf
SysFEAT-ModelingFramework-13-ConceptualizationLevels.pdf
SysFEAT-ModelingFramework-13-ConceptualizationLevels.pdf
SysFEAT-ModelingFramework-20-EnterpriseDomains.pdf
SysFEAT-ModelingFramework-20-EnterpriseDomains.pdf
../../pages/57df58ab55091a58.htm
../../pages/57df58ab55091a58.htm
../../pages/57df58ab55091a58.htm
../../pages/f8e671d5621feded.htm
../../pages/f8e671d5621feded.htm
SysFEAT-ModelingFramework-25-AgilityAndSystemThinking.pdf
SysFEAT-ModelingFramework-25-AgilityAndSystemThinking.pdf

4
Modularity & Modeling language

e As any language, modeling languages have three aspects:
o Syntax is the required grammar and punctuation of the language.

« Semantics is about signification - what do we mean by a Capability?

o« The Systemic Operating Model (SOF) is about operating semantic for Enterprise
Architecture.

o Pragmatics/Architecting has to do with:
o How to use models (modeling technics).

o What kind of model to use to address stakeholder concerns (method)
v Example: how to use capability modeling in enterprise transformation initiatives.

e This document presents syntactic foundations for developing modular enterprise
models.

SysFEAT-ModelingFramework-02-Semantic.pdf
SysFEAT-ModelingFramework-02-Semantic.pdf
SysFEAT-ModelingFramework-10-SOF.pdf

Modularity in the Architecture modeling landscape

Upper Ontology

e This document focuses on modularity at the
syntax level, which is grounded on two e
complementary aspects: compositionality and
packaging.

Modularity Semantic

e Compositionality is the ability to assemble entities
to form bigger constructs called aggregates.

« compositionality is a syntactic concern that does not 3 i _________________________ .
carry inherent semantic meaning. E ; -—

o It can be applied to both semantic relationships of
composition and typology.

Abstractions

L ——

Conceptualization Systemic
. Levels Levels y

e Packaging is the ability to group autonomous-
reusable building blocks in modules also called ‘.‘
Packages.

Systemic Ontology

Enterprise Domains

e These two disciplines come hands to hands but shall
not be confused.

Agility and System Thinking

Enterprise Ontology
& Transformation

../../pages/36166b8c6157b6b4.htm
../../pages/f0fd779f65a18c5d.htm
../../pages/23d5c5ce68514283.htm
../../pages/be05c0f06707070e.htm
../../pages/c2f2c6ce66e90be7.htm
../../pages/2d8bc56666077882.htm
../../pages/23d5a9ea68513ced.htm
../../pages/0eb947546854a13d.htm

Compositionality: Why?

Complexity Is Good,;
It Is Confusion That Is Bad

Don Norman

The DESIGN of EVERYDAY THINGS

e

Modularity benefits — Don Norman illustration

e Source: Don Norman - Living with complexity - page 236

o« Count the circles simply by looking at them: don’t use your hands or a pointer to help.
Difficult, isn’t it?

Figure 8.3

https://books.google.fr/books?hl=fr&lr=&id=DlT5DwAAQBAJ&oi=fnd&pg=PR7&dq=Don+Norman+%E2%80%93+Living+with+complexity+&ots=asPIvYswLH&sig=hfB3Xm11x9Jxsc0Bq087hG7e1IQ&redir_esc=y#v=onepage&q=Don%20Norman%20%E2%80%93%20Living%20with%20complexity&f=false
https://books.google.fr/books?hl=fr&lr=&id=DlT5DwAAQBAJ&oi=fnd&pg=PR7&dq=Don+Norman+%E2%80%93+Living+with+complexity+&ots=asPIvYswLH&sig=hfB3Xm11x9Jxsc0Bq087hG7e1IQ&redir_esc=y#v=onepage&q=Don%20Norman%20%E2%80%93%20Living%20with%20complexity&f=false
https://books.google.fr/books?hl=fr&lr=&id=DlT5DwAAQBAJ&oi=fnd&pg=PR7&dq=Don+Norman+%E2%80%93+Living+with+complexity+&ots=asPIvYswLH&sig=hfB3Xm11x9Jxsc0Bq087hG7e1IQ&redir_esc=y#v=onepage&q=Don%20Norman%20%E2%80%93%20Living%20with%20complexity&f=false

e

Modularity benefits — Don Norman illustration

e Source: Don Norman - Living with complexity - page 236

Now count the very same items shown in figure 8.4, again without using hands or other
objects as aids: much easier, isn’t it?

Figure 8.4

https://books.google.fr/books?hl=fr&lr=&id=DlT5DwAAQBAJ&oi=fnd&pg=PR7&dq=Don+Norman+%E2%80%93+Living+with+complexity+&ots=asPIvYswLH&sig=hfB3Xm11x9Jxsc0Bq087hG7e1IQ&redir_esc=y#v=onepage&q=Don%20Norman%20%E2%80%93%20Living%20with%20complexity&f=false
https://books.google.fr/books?hl=fr&lr=&id=DlT5DwAAQBAJ&oi=fnd&pg=PR7&dq=Don+Norman+%E2%80%93+Living+with+complexity+&ots=asPIvYswLH&sig=hfB3Xm11x9Jxsc0Bq087hG7e1IQ&redir_esc=y#v=onepage&q=Don%20Norman%20%E2%80%93%20Living%20with%20complexity&f=false
https://books.google.fr/books?hl=fr&lr=&id=DlT5DwAAQBAJ&oi=fnd&pg=PR7&dq=Don+Norman+%E2%80%93+Living+with+complexity+&ots=asPIvYswLH&sig=hfB3Xm11x9Jxsc0Bq087hG7e1IQ&redir_esc=y#v=onepage&q=Don%20Norman%20%E2%80%93%20Living%20with%20complexity&f=false

4

Modularity — The need for syntax and boundaries

e Extracts from James Joyce : Molly bloom’s solilogquy (Ulysse) Just a list of words: no more

separators for sentences

o« <..> because they’re so weak and puling when they’re sick they want a woman to
get well if his nose bleeds you’d think it was O tragic and that dying looking one
off the south circular when he sprained his foot at the choir party at the sugarloaf
Mountain the day I wore that dress Miss Stack bringing him flowers the worst old
ones she could find at the bottom of the basket anything at all to get into a mans
bedroom with her old maids voice trying to imagine he was dying on account of
her to never see thy face again though he looked more like a man with his beard
a bit grown in the bed father was the same besides I hate bandaging and dosing
when he cut his toe with the razor paring his corns afraid he’d get bloodpoisoning
but if it was a thing I was sick then we’d see what attention only of course the
woman hides it not to give all the trouble they do <..>

e The first reading of such a text usually leads to a feeling of disarray along with the
beginning of a headache. This reading exercise shows how much we need to define the

boundaries of things to be able to understand them.

4
The need for syntax : symbols

e For syntax to exist, there is a need for discontinuous signs so that words (symbols) can

be identified and then put into sentences.
Just a list of letters no more
separators for words.
o <..>

becausethey’resoweakandpulingwhenthey’resicktheywantawomantogetwellifhisno
sebleedsyou’dthinkitwasOtragicandthatdyinglookingoneoffthesouthcircularwhenhe
sprainedhisfootatthechoirpartyatthesugarloafMountainthedaylIworethatdressMissSt
ackbringinghimflowerstheworstoldonesshecouldfindatthebottomofthebasketanythi
ngatalltogetintoamansbedroomwithheroldmaidsvoicetryingtoimaginehewasdyingo
naccountofhertoneverseethyfaceagainthoughhelookedmorelikeamanwithhisbeard
bitgrowninthebedfa therwasthesamebesidesihalebandaginganddosingw .

oew
<..>

e Hoffmeyer and Emmenche - Code-Duality and the Semiotics of Nature:

e According to Gregory Bateson information is based on difference. A sensory end organ is a
comparator, a device which responds to difference. While reading this, for instance, your eyes
do not respond to the ink, but to the multiple differences between the ink and the paper.

https://www.nbi.dk/~emmeche/coPubl/91.JHCE/codedual.html
https://www.nbi.dk/~emmeche/coPubl/91.JHCE/codedual.html
https://www.nbi.dk/~emmeche/coPubl/91.JHCE/codedual.html

The need for syntax : scientific foundations

e Holland, John H.. Signals and Boundaries: Building Blocks for Complex
Adaptive Systems (The MIT Press) (p. 36).

Typically, the rules of deduction are drawn from symbolic logic, in which the rules
manipulate symbols without reference to the interpretation or the meaning of the
symbols. That is, the manipulations are syntactic, depending only on the

arrangement of the symbols.

o <..>

This syntactic approach comes close to being a sine qua non for theoretical
science. Matters of speculation and interpretation are moved from the argument

back to the premise.

Architecture &
compositionality

The issues of current frameworks

What is the problem ?

e To support effective development, management and transformation of enterprises and their systems

architecture models must themselves be modular to deliver the following services:
« Be able to build architecture alternatives.

« Be able to manage catalogs/packages of reusable building blocks.
« Be able to compare alternative architectures.

« Be able to guide enterprise transformation, involving time and space perspectives.

e Problem:

« The two common modeling syntaxes used for architecture descriptions — monolithic hierarchies and flat

lcglrapl?st ﬁ)frevent from creating effective building block boundaries, thereby denying the notion of building
ock itse

o Without effective scoping principles, model-driven architecture & management cannot successfully help in
designing complex adaptive systems while ensuring associated quality/security assurance.

Retail System HR System

eCommerce Payment Payroll recruitment

fandiadiy Handiadiy

; 1 ndsarkads training

-
“

X.1.1.1 X.1.1.2 Y.1.1.1 Y.1.1.2

X.1.2.2. e v.1.1.2 Y.1.2.1.1
il

4

Problem 1 : monolithic hierarchies & interconnections

e Benefits of monolithic hierarchies.
« They follow the usual breakdown practice (Cartesian approach).

« They provide hierarchical scope for building blocks. This sometimes represented by

naming conventions, such as, "X.1.1” and "X.1.2" are in “"X.1"”. IDEF notations are a good
illustration of monolithic hierarchies.

e Issues: monolithic hierarchies hardwire building blocks together:
 Blocks can only be part of a single hierarchy: the single parent syndrome.

If multiple parent-relationship is allowed, inter-connections become undefined : the many
to many relationship syndrome (see next slide).

Illustration : monolithic hierarchies & interconnections

Let’s consider two monolithic application hierarchies:
o Retail-System (on the left below) and HR-System. (on the right below).

e If Payroll (from HR System) needs to send a message to Payment (from Retail System), does this implies that:

e Payment becomes part of the HR-System hierarchy ?
. or that The HR-System depends on the Retail-System (cross hierarchy dependency)?

e Similar issues occur on sequences between processes, flows between processes, etc. Strict hierarchical scope prevent

from having reusable, autonomous building blocks.

e The benefit of autonomous monolithic hierarchies is lost because of the need to connect multiple hierarchies.

HR
System

Retail
System

ararchy Messag

Msg flow 2

Msg fl 1 :
S Ul Payroll Recruitment

eCommerce Payment

APP XZY Training

APP XYB

Problem 2 : flat graphs — non-local relationships

e Benefits of flat graph models:

« They avoid the single parent, single scope syndrome of monolithic block hierarchies.

« They enable a natural discovery of unitary building blocks and their dependencies through story boards. For
instance, may architects look at messages between software systems or events and commands through
event storming or ArchiMate models.

e Issues:
« Building Block_assemblies_(alglﬂregates) have been lost: there are no more scoped relationships but a single
global graph (is Payment in system?).
 Adding a relationship at one end of the graph has undefined effects on the rest of the graph, hence building
blocks do not have an autonomous definition.

« Diagrams are often used for creating pseudo system boundaries. As mere pictures, diagrams do not provide
an éxplicit definition of system-boundaries. We are back to Visio (See EPC & ArchiMate below)!

) What is the impact of adding this
Retail System HR System connector ?
Is Recruitment changed ?

Is Training changed ?
eCommerce Payment Payroll recruitment . both ? g 9

What is the change impact scope ?
Recruitment, HR System, ... the entire
graph ?

training

Y,

Problem 2: flat graphs - the case of EPC models

e EPC Models - Extract from Wikipedia (2008):

o <..>Unfortunately, neither the syntax nor the semantics of EPC are well-defined.[.l EPC
requires non-local semantics,/2! so that the meaning of any portion of the diagram may
depend on other portions arbitrarily far away.<..>

Notes:

1. Full document available here

2. Note that the last revision of EPC on Wikipedia has removed the
reference to non-locality

https://en.wikipedia.org/w/index.php?title=Event-driven_process_chain&oldid=196319782
https://en.wikipedia.org/w/index.php?title=Event-driven_process_chain&oldid=196319782
https://en.wikipedia.org/w/index.php?title=Event-driven_process_chain&oldid=196319782
https://en.wikipedia.org/w/index.php?title=Event-driven_process_chain&oldid=196319782
https://en.wikipedia.org/w/index.php?title=Event-driven_process_chain&oldid=196319782#cite_note-1
https://en.wikipedia.org/w/index.php?title=Event-driven_process_chain&oldid=196319782#cite_note-2
../external-references/2004-06-BPM_Conference-with-article-on-EPC-circular-semantics.pdf

4

e ArchiMate faces similar issues. It has introduced an intuitive

mechanism to contextualize relationships, called grouping -
with the following definition:

e« The grouping element is used to group an arbitrary group of
concepts (élements and/or relationships), which can be of the
same type or of different types. The a%gregat/on relationship is
used to link the grouping element to the grouped concepts.

e The term 'arbitrary' introduces significant ambiguity. This

lack of precision allows ArchiMate experts to interpret
concepts in a nearly unlimited number of ways. The
challenge is compounded when defining relationships
between groups of elements, where consistent rules are
most critical.”

e The diagram on the right reveals the issue of non-local

relationships:

e The relationships between Process 1, Process 2 and Object need to be

contextualized for the relationship with Service to be established, excluding the
relationship from Process-1 to Process-3.

Problem 2: flat graphs - the case of ArchiMate

Composite
Element

[

)

Grouping

Location

aggr

composed of

Process

=
Process 3

egates / l

aggregates [

l composed of

Concept

1

Object

https://pubs.opengroup.org/architecture/archimate3-doc/ch-Generic-Metamodel.html#sec-Grouping

Compositionality Principles

SysFEAT layered approach of relationships

The modularity principles of SysFEAT aims at providing modular connectable structures,
using a layered approach of relationships.

1. Locality of relationships is supported by Kuratowski ordered pair, which embeds
order and source-target asymmetry inside set theory:

(a,b) ={ {a}, {a,b} }

2. Lexical scoping provides the ability to nest entities: namespaces, functions inside,
functions, entities inside entities.

3. Compositionality provides dynamic locality for entities with emerging concepts of
building blocks and aggregates (see next slide).

https://en.wikipedia.org/wiki/Ordered_pair#Kuratowski's_definition
https://www.framework.sysfeat.com/pages/a39aaa7f685e5118.htm
https://www.framework.sysfeat.com/pages/a39aaa7f685e5118.htm
https://www.framework.sysfeat.com/pages/36166b8c6157b6b4.htm
https://www.framework.sysfeat.com/pages/36166b8c6157b6b4.htm

Aggregates

Aggregates are Building Blocks, with an internal
structure made of aggregate members

Depending on the working context, users are sometimes
interested only in the main entity (Black box), and
some other times in the internal structure (White box)

Typically, Organizations, Applications, Processes and
Capabilities are aggregates.

Remark:

o Aggregate is a term defined in the standard Domain
Driven Designh approach DDD.

o« SysFEAT offers a formal framework for the intuitive
concepts introduced by DDD.

Purchase Order
approved limit
i {sum of em amounts <= P.0 Unformalized notion of
ed limi .
* N “aggregate” in DDD
Part Purchase Order Line
Item
price

quantity
price

Capability #3 Process #1 Application #5
<+ —_—)
(Y 1 I— [— > | @
Black bo

User concerned by main objects only
Aggregate-Shortcut 1

................................... Business Use Case>

Capability #3 Process #1 Application #5

® < & > @&
EN 14
AT | .
'.°°.\ TN | :

---- NS

L 8 S Y \ | i

: Fulﬁlln;ent #1 : ;

oY
et
..'c .

»

System
“Used #1

o
o®
.
.

hite bo
User interested in internal structure
........................ Membershjp of Contextua|.0bject S
—————— Contextualized Block— — — — — — &
................................ Business Use Case>

)

../../pages/23d5a9ea68513ced.htm
https://martinfowler.com/bliki/DDD_Aggregate.html

WARNING
Compositionality VERSUS COMPOSITION

Compositionality is a syntactic concept that lacks inherent semantic
meaning. It is an ability to assemble entities to form bigger constructs called
aggregates, but it does not define the nature of their relationships.

Compositionality can be applied to various semantic relationships, such as
composition, specialization (e.g., "generalization"” in UML) or classification.

For more details on composition, please look at the presentation on
semantic.

A frequent misconception is conflating nesting, compositionality, and
composition. While these concepts may combine, they address distinct

aspects of system design and should not be confused.

o Nesting refers to lexical scoping: a syntactic structuring mechanism where
entities are hierarchically contained within others.

o« compositionality deals with composite structures: how entities can be combined
to form higher-level aggregates while preserving their functional integrity.

« Composition is a whole/part semantic, which can be elementary or composite

../../pages/23d5c5ce68514283.htm
../../pages/be05c0f06707070e.htm
../../pages/c2f2c6ce66e90be7.htm
../../pages/e53a5e9466e4aef5.htm
../../pages/1e241e8868ae202b.htm
SysFEAT-ModelingFramework-02-Semantic.pdf
SysFEAT-ModelingFramework-02-Semantic.pdf
../../pages/02a506a968540333.htm
../../pages/c2f2c6ce66e90be7.htm
../../pages/02a506a968540333.htm
../../pages/02a506a968540333.htm
../pages/36166b8c6157b6b4.htm
../pages/36166b8c6157b6b4.htm
../../pages/23d5c5ce68514283.htm
../../pages/c2f2c6ce66e90be7.htm
../../pages/c2f2c6ce66e90be7.htm

Overview of compositionality principles

e Compositionality is the ability of constructing complex Building Blocks
(Aggregates) by local assembly of related entities, creating a unified composite
that exhibits emergent properties—qualities that surpass the simple sum of its
individual constituents.

e At its core, compositionality bridges two key perspectives: hierarchies (local
nesting of related Building Blocks) and networks (connections between Bounded
Aggregates). To achieve effective compositionality, four essential characteristics
must be present:

o Reified Relationships: the transformation of a binary relationship between a source
and a target entity into a distinct entity called an Aggregate Member, which
represents the relationship itself, embedded within its source.

« bBounded Aggregates : aggregates that encapsulate their internal structure behind a
boundary, ensuring clarity and modularity.

« Boundaries: connection points that express as an ability to connect, in accordance
with connection definitions: Connection Entities.

o« Connection Entities : these new kind of entities defines connectivity relationships
between assembled aggregates, serving as the glue that binds them together.
Examples include Events and Service Interfaces.

../../pages/23d5a9ea68513ced.htm
../../pages/23d5c5ce68514283.htm
../../pages/02a506a968540333.htm
../../pages/23d5a9ea68513ced.htm
../../pages/8cfa941b6852781f.htm
../../pages/8cfa941b6852781f.htm
../../pages/23d5ddef68514dba.htm
../../pages/8cfa941b6852781f.htm
../../pages/8cfa941b6852781f.htm
../../pages/23d5c5ce68514283.htm
../../pages/1404416c670e81aa.htm
../../pages/1404416c670e81aa.htm
../../pages/23d5eaba68515533.htm
../../pages/23d5eaba68515533.htm

4

Aggregate Blocks & Contextualization (Aggregation)

e An Aaggregate is a Building Block which has an internal structure made of Aggregate
Members :

o Typically, attributes of a class, steps of a process are aggregate members.
o Agents, Processes, Capabilities, Data Objects are aggregates.

e Aggregation allows defining characteristics for the aggregated Building Block that

only apply within its parent Aggregate. This enables expressing the emergent
properties of the composite structure.

NOTE: The term "Aggregate” originates from the widely recognized Domain-Driven Design (DDD) framework.

../../pages/23d5c5ce68514283.htm
../../pages/23d5a9ea68513ced.htm
../../pages/F277CFCE601BD9AF.htm
../../pages/F277CFCE601BD9AF.htm
../../pages/23d5a9ea68513ced.htm
../../pages/23d5c5ce68514283.htm
https://martinfowler.com/bliki/DDD_Aggregate.html

4

Compositionality: towards layered graphs

e Compositionality induces a new
method for structuring graphs of
entities and relationships,
replacing the conventional
Entity/Relationship model with a
dual-layered graph framework.

e The Elementary graph is a
traditional directed graph that
includes nesting relationships.

e The secondary graph employs
nesting relationships as a
mechanism to delineate the
internal structure of aggregates
and infer emerging relationships
between them.

Elementary
Graph

Secondary
Graph

Entity Element
L4

Entity Element

Elementary
Block

@< Emerging

A relationship
4

Block
Emerging —{> G

Entity Element

nesting
nesting

Ent|ty Element

Entity Element

Entity Element

Aggregate
Aggregate <L

relationship

L4

@» Member

/ Internal
Structure

../../pages/ae26f9c25acd52d4.htm
../../pages/02a506a968540333.htm
../../pages/36166b8c6157b6b4.htm
../../pages/02a506a968540333.htm
../../pages/23d5c5ce68514283.htm

4
Secondary Graph illustration - BPMN

Aggregate Entity: <P Member Nesting: ~ ~-
Block relationship: _— Block projection: _
Aggregate Member: ¢ Actor

Member relationship: —>

Process Family:

L 23

Process: ? -

Application
Componer}

Layered graphs and navigation

e Depending on the context of their work, users may prioritize either the external aspects of
aggregates (Black box) or delve into their internal structure (White box) at different times."

e Structural zooming is a novel approach of graph navigation to address these needs.

e It i_nt_e_?rates zoom, fusion, or morphing to enable users to scrutinize aggregate details while maintaining
visibility of higher-level aggregates and their interconnections.

e It encompasse_s two pivotal functions: zoom-in, which delves into the internal structure of aggregates, and
zoom-out, which ascends to reveal direct relationships between aggregates.

Process Family: | @<«

Zoom out aggregate L4
internal structure

Process step:

SysFEAT-ModelingFramework-Visualization.pdf
SysFEAT-ModelingFramework-Visualization.pdf
SysFEAT-ModelingFramework-Visualization.gif

Aggregate structures versus Views

e Emerging relationships should not be confused with relationship paths required to build
views.

e Views are traversal of aggregate structures. They are built to respond to specific
processing of portions of concepts graphs.

Capability #3 Process #1 Application #5
® | < @ > &
Capability #3 Process #1 Application #5
< e —
Y I—— L — 5 @
Black bo
User concerned by main objects only
Aggregate-Shortcut >
................................... Business Use Case > i
hite box
User interested in internal structure
------------------------ Membership of Contextual-Objectccccccoceeea>
—————— Contextualized Block— — — — — — &»

................................ Business Use Case)

Conclusion on Graphs

e Standard Graph Theory, as defined by the tuple G = (V, E), lacks the formal
machinery to represent hierarchical locality or containment. The model is flat and
possesses only connectivity, not ability for compositionality.

e Therefore, knowledge graphs can’t directly encode scoped local meanings:
everything is global by default.

e The lack of native locality in graphs is a real limitation for using knowledge graphs to
direct LLMs, because LLMs (like programming languages) thrive on scope, hierarchy,
and compositionality.

e The modularity principles of SysFEAT aim at providing modular connectable
structures, using a layered approach of relationships.

Aggregated ComDOSItIOna“tV

Derived referencing

Derived Nesting Edge

Nesting Edge

Nesting Nesting Edge Existential
Edge dge

Aggregate
Entity

Aggregate
Entity

Nesting
Relationship

Aggregate
Feature

Existential
Relationship

N

Aggregate
(Compositionality)

Nestin.g"".’. Dependency

Existential Edge

Nesting Edge

Existential

. Nesting “. ™.
Entity Relationship ™. ™. Entify., Entity Relationship Entity

Element Element ™. Element Element

Lexical

scoping

Nesting &
Reference

... Nesting

Entity

Element Entity

: Element
Relationship :

Relationship

Element

ER Directed
Graph

Kuratowski ordered pair:

(a,b) = { {a}, {a,b} }

Directed Graph

https://en.wikipedia.org/wiki/Ordered_pair#Kuratowski's_definition
../../pages/23d52fdf685116ac.htm
../../pages/23d52fdf685116ac.htm
../../pages/a39aaa7f685e5118.htm
../../pages/a39aaa7f685e5118.htm
../../pages/36166b8c6157b6b4.htm

Packaging & Modules

Packaging

e Packaging is the ability to group building blocks into modules commonly referred to as
"packages" or "packages" in software engineering. The general concept for packages in
the concept of Container.

e Containers are the means to group and version the different components of a system.
o In the case of software, this components comprise codes, data, configurations
« In the case of models, this components comprise aggregate building blocks and their
connections.
e Containers dependencies must be identified and mastered to automate the delivery of
modules and ensure the deployment processes in different environments.

e Containers must be tested, built, and versioned to be ready for continuous deployment.

e Packaging is an essential aspect of incremental delivery and a key foundation for modular
enterprise modeling and architecting.

../../pages/23d5a9ea68513ced.htm
PAGES/4089423855572F23.htm
PAGES/4089423855572F23.htm
PAGES/4089423855572F23.htm
../../pages/23d5c5ce68514283.htm
PAGES/4089423855572F23.htm
PAGES/4089423855572F23.htm
PAGES/4089423855572F23.htm
PAGES/4089423855572F23.htm

Building Blocks & Containers

e As reusable units, Building Blocks have an independent
existence. Thus, they cannot be nested into other Blocks that
would hide their existence.

e Because of their independent existence, they must belong to
an independent artifact whose sole purpose is the modular
management of building blocks: containers.

e (Containers are dedicated to the modular management of
building blocks:
« They hold the building blocks to which they provide existence.
« They can provide a namespace for building blocks.

« They potentially have dependencies on other containers (see
next slide).

e Versioning of modules in EA is a separate concern that will be
addressed in a future section on building block management.

|

Packaging of Blocks

{nesting relationship}

Container

../../pages/23d5a9ea68513ced.htm
PAGES/4089423855572F23.htm

4
Summary of the dependency stack

e Dependencies are built on a stack of two nesting layers:

1. Ownership of relationships and model elements
1. Relationship must be directed (ownership of relationships)

2. Model elements must be owned (nesting relationship) by a
cluster of model elements (process owns operation, library
OWNS process).

2. Clusters & dependencies

1. Clusters are either:

1. building blocks: reusable, independent clusters (process owns
operation).

2. Containers: owner of building blocks (library owns process).

2. dependencies between building blocks creates dependencies
between modules.

Layer 1 —=<

Layer 2 —=

reference relationship

e

nesting relationship

:*

dependency ;

Packaging of Blocks
{Nesting relationship}

dependency

Y,

Container dependencies

e Dependencies between building blocks (red arrows below) result in inferred
dependencies between modules that package them.

e Dependencies between modules must be made explicit through a dependency
analysis process.

Cross-container dependency
Bloc dependency:

Intra-container dependency

Building Block: @

Dependency analysis
process | depends on depends on

depends on

	Slide 1: Systemic Framework for Enterprise Architecture & Transformation Modularity
	Slide 2: Introduction
	Slide 3: Foundations of enterprise modeling
	Slide 4: Modularity & Modeling language
	Slide 5: Modularity in the Architecture modeling landscape
	Slide 6: Compositionality: Why?
	Slide 7: Modularity benefits – Don Norman illustration
	Slide 8: Modularity benefits – Don Norman illustration
	Slide 9
	Slide 10
	Slide 11: The need for syntax : scientific foundations
	Slide 12: Architecture & compositionality
	Slide 13: What is the problem ?
	Slide 14: Problem 1 : monolithic hierarchies & interconnections
	Slide 15: Illustration : monolithic hierarchies & interconnections
	Slide 16: Problem 2 : flat graphs – non-local relationships
	Slide 17: Problem 2: flat graphs – the case of EPC models
	Slide 18: Problem 2: flat graphs – the case of ArchiMate
	Slide 19: Compositionality Principles
	Slide 20: SysFEAT layered approach of relationships
	Slide 21: Aggregates
	Slide 22: WARNING Compositionality VERSUS COMPOSITION
	Slide 23: Overview of compositionality principles
	Slide 24: Aggregate Blocks & Contextualization (Aggregation)
	Slide 25: Compositionality: towards layered graphs
	Slide 26: Secondary Graph illustration - BPMN
	Slide 27: Layered graphs and navigation
	Slide 28: Aggregate structures versus Views
	Slide 29: Conclusion on Graphs
	Slide 30
	Slide 31: Packaging & Modules
	Slide 32: Packaging
	Slide 33: Building Blocks & Containers
	Slide 34: Summary of the dependency stack
	Slide 35: Container dependencies

