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System Engineers

§ System engineers coordinate with all the other engineers
– To produce a manufacturable design that will probably work. 4
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Getting to “Will Probably Work”

§ Domain engineers have mathematical tools for predicting 
how systems will behave. 5
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Engineering Analysis

§ Analyzers “imitate in advance” how real systems 
will be constructed, operated, and behave. 6

Real or Virtual
Things being

specified
(as simulated,

constructed,operated)

Analyzing a
Model

System model

Building to a
Model

predicts



SE and Engineering Analysis?

§ SEs need their own analysis tools to compare 
predicted behavior with  domain engineers. 7
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Modeling

9

Language Developers
(using example models)

assoc BinaryLink specializes Link {
feature participant: Anything[2] nonunique 
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant;  // pairs of links

What are they imagining
for system operation?



Modeling                                  Analysis
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Language Developers
(using example models)

assoc BinaryLink specializes Link {
feature participant: Anything[2] nonunique 
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant;  // pairs of links

Analysis Tool Builders
(incl execution, simulation,

reasoning, etc)
assoc BinaryLink specializes Link {

feature participant: Anything[2] nonunique 
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant;  // pairs of links

What should tools predict for
system operations?

What are they imagining for 
system operation?



assoc BinaryLink specializes Link {
feature participant: Anything[2] nonunique 
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant;  // pairs of links

Modeling and              Analysis

11

Analysis Tool Builders
(incl execution, simulation,

reasoning, etc)

Language Developers
(using example models)

Communicate only
through a standards spec

assoc BinaryLink specializes Link {
feature participant: Anything[2] nonunique 
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant;  // pairs of links

What should tools predict for
system operations?

What is imagined for 
system operation?

Don’t know each other



<xmi:XMI xmi:uml=http://www.omg.org/spec/UML/20110701>
<packagedElement xmi:type="uml:Class" name="Circuit">

<ownedAttribute xmi:type="uml:Property” name="r"
type="_17_0_2_1_8340219_1386362605823_957929_2536“/>

<ownedAttribute xmi:type-"uml:Property” name="c"
type="_17_0_2_1_8340219_1386362584651_224589_2534“/>

<owned.Attr~bute xm1:type="uml:Property" name="i"    
type="_17_0_2_1_8340219_1386362591582_80360_2535“/>

<ownedConnector xmi:type-"uml:Connector“/>
<ownedConnector xmi:type-"uml:Connector“/> 
<ownedConnector xmi: type-"uml :Connector“/>
<ownedConnector xmi:type-"uml:Connector“/>

</packagedElement>
<packagedElement xmi:type-"uml:Class" name="Source“/>
<packagedElement xmi:type-"uml:Class" name="Ground“/>
<packagedElement xmi:type-"uml:Class" name="Capacitor“/> 
<packagedElement xmi:type-"um1:Association“/>
<packagedElement xmi:type="um1:Assoc1ation“/>
</uml:Model>
</xmi>

Modeling Language Lifecycle

12

assoc BinaryLink specializes Link {
feature participant: Anything[2] nonunique 
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant;  // pairs of links
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Modeling Languages, Part 1

§ Modeling tools follow a language standard
– Often using (standard) model libraries

13
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predicts
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Example: Natural Language

15

Specifies real or 
virtual things 

Specifies
sentences   1

2

Grammar

Using a
Natural Language

Sentences
reuses Vocabulary

Describes

Sentence

Noun
Phrase

Verb
Phrase

Determiner
Noun
Verb
Noun
Phrase

“A quick brown
fox jumps over a

lazy dog.”

§ Verbs
– climb
– drive

§ Alphabet:
§ Word order
§ Kinds of words
§ Using words

Real or Virtual
Things being

described
No nouns and

verbs here

§ Nouns
– mountain
– road

3



Example: SysML/UML

16

Specifies real
or virtual    

things     

Specifies
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models  1

2

UML Metamodel
/ SysML stereotypes

Using SysML

System
Model reuses

Describes

§ Blocks
§ Activities
§ Actions
§ Control Flow

Real or Virtual
Things being

described
No blocks and

flows here

§ Behaviors
– Paint
– Dry

act Manufacture

Paint Dry

Domain library

Time
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Models ≠ Things Being Modeled

§ Models are not in time    (compare to model versioning)
17

System
Model

Describes

act Manufacture

Paint Dry

Time

Dry

Paint

Manu-
facture Three

paints, dries
at separate

times

Two
paints, dries
at separate
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One
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at separate

times

Two roundtangles,
at the same time

2 A painting 
happening 
before a drying.



No Blocks on the Tarmac
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The “L” Word
§ “Language”
§ Usually interpreted as = vocabulary

– Spoken/written words, eg, “plane”, “bonjour”, etc.
§ In software/OMG circles = reserved words

– Words defined in standard, eg, “block”, “if then”, etc.
– Reserved = can only be used as specified.
– Not vocabulary in the usual sense.

§ Formal language theory
– Coming up!

19



A Map is not the Territory

20
https://en.wikipedia.org/wiki/Alfred_Korzybski

No contour linesContour lines
(constant elevation)

https://en.wikipedia.org/wiki/Alfred_Korzybski


Magritte

21
https://en.wikipedia.org/wiki/The_Human_Condition_(Magritte)

https://en.wikipedia.org/wiki/The_Human_Condition_(Magritte)


Magritte
at OMG

22

 



If You Don’t Get This …
§ … it’s OK!
§ Only a small number of computer folks do

– They write compilers for programming languages
§ It’s capital equipment

– For producing useful analysis software
§ But the rest of this presentation might be confusing

– and it might not be clear why systems engineering 
languages can’t succeed without it, because …

– … SEs won’t be able to interact with domain-specific 
engineers, who all use analysis tools. 23
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Technical Terms for Parts 1 & 2

25

Semantics
specifies real
or virtual      

things      

Syntax
specifies  

models
1

2



Inverse Terms for Parts 1 & 2

§ Conformance is a 
yes/no question. 26

Real or
virtual things 
conform    

to semantics
(or not)    

Models
conform 

to syntax
(or not)

1

2



The (second) “S” Word
§ One meaning used here: how to tell when …
§ a real or virtual thing (as constructed and operated) …
§ “follows” (conforms to) a model …
§ … written in a particular language.

§ “How to tell” =
– procedure resulting in true or false when applied to real or 

virtual thing/operation.
– Based on conditions that must be met by operated thing.

§ Compare to
– Application vocabulary (lathes, drills, etc).
– Model development methods (requirements, designs). 27



Checking Semantics

§ How do we know whether real or virtual things built 
& operated to a model follow the model?
§ = Semantics (a boolean check) 28

Things being
specified

(as constructed
& operated)

Interpreting a
Model

Engineering
model

? Yes / No
(Semantics)



Producing Real/Virtual Things from Models

29
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§ Producing real/virtual things is difficult.
– Checking these things (using semantics) is easy.



SE: Requirements, Designs, Tests

§ Do real/virtual systems meet requirements when 
built and operated according to a design? 30
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Language Specs  &  Implementations

§ Do analysis tools “meet” the language spec? 31
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Systems Engineering for Languages
§ SE involves multiple kinds of specifications:

– Intended effects of a language (requirements ↔ semantics)
– How models bring about effects (designs ↔ analysis tools)
– Testing whether real/virtual systems have the required effects  

when built/operated per a model (tests ↔ semantic checking). 

33

Systems Engineering Modeling Languages
Requirements Semantics

Designs Analysis Tools

Tests Semantic Checking



SST: Standardize Checking, Not Production
§ Many ways to create and analyze models based on a 

standard language
– Many ways to design a system to meet requirements

§ OMG doesn’t specify how to create models
– Just how to interchange and access them (syntax/API).

§ It shouldn’t specify how to analyze them either
– Just how to tell when results are correct (semantic check).

34



Technical Term: Inference
§ Produce real or virtual things

– Execution
• Incremental creation, usually deterministic 

and time ordered.
– Simulation 

• Less deterministic execution.
• Aggregate measures of probable executions.

– Reasoning
• Search based directly on semantics.

36
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§ Inference procedures are evaluated by whether results
§ Always pass semantic check (soundness).
§ Include everything that can pass it (completeness).
§ Can be produced (how) quickly (complexity).

from models = inference

https://www.nist.gov/publications/evaluating-reasoning-systems
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Standardizing Conformance, Syntactic

§ Typical “instance checking”
– between metamodel and model
– specified in the usual way (classes, properties, constraints)38
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Conformance = Classification

§ Things (structural and behavioral) that do/not conform 
to (are/not classified by) their models 47
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BehaviorStructure



Classification Synonyms

48

Classified by
Modeled by
Specified by
Conforms to
Follows
Satisfies (logically)

Not quite: “Instance of” (in the OO sense)
Not at all : “Execution of” (MES/software sense)

Time

Shoot
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Behavior
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Taxonomies

§ “Sub”classification …
§ …of real or virtual things.

49
http://mechanicalgalaxy.blogspot.com/2011/05/heat-exchangers-classification-types.html

Fin
Tube

SysML/UML
Generalization

Heat
Exchanger

Recuperative

Plate Tubular

Regenerative

ShellClusterCoilFin
Plate Spiral

Model
(M1)



Venn Diagrams

§ More accessible notation for taxonomies
– but less scalable.

50
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Informal Semantics

52

From UML 2.5 Specification:

UML/SysML Generalization

How can this be specified more precisely?

Vehicle

Car

“Every instance of Car is an 
instance of Vehicle”

iow
“Every Car is a Vehicle”

iow
“Cars are vehicles”

“Each instance of the specific 
classifier is also an instance of 
the general classifier”



= a single real or virtual thing

Mathematical Semantics

53

OWL SubClassof

From OWL 2 Direct Semantics:

Vehicles

Cars

subset of

SubClassOf ( Car, Vehicle )

Axiom  Condition 
SubClassOf( CE1 CE2 ) (CE1)C ⊆ (CE2)C

OWL 2 Direct Semantics  https://www.w3.org/TR/owl2-direct-semantics/



SST and OWL
§ Most of SST semantics is equivalent to OWL.

– Emulated its style and notation.
– Exceptions covered in the next section.

§ This section covers SST as it overlaps OWL
– uses some SST terms …
– … with OWL semantics and notation conventions.

§ Next section updates semantics to SST.

54



Standardizing Semantic Conformance?
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Universe

§ Everything, anything, no restrictions, don’t know 
anything about them, how many, etc.
§ For interpreting models. 56

All things
(virtual, real, 

imagined, never 
existed …)

Metamodel

Model

Using a
metamodel

Interpreting a
model

Δ

Set

OWL 2 Direct Semantics  https://www.w3.org/TR/owl2-direct-semantics/



Vocabulary, Types

§ Beginning of syntax for model elements.
– At least for elements affecting real & virtual things.

57

Universe

Metamodel

Model

Using a
metamodel

Interpreting a
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Type

Set Δ

Set of
types

VT



Interpretation

§ Links model elements to (mathematical structures 
made up of) things in the universe.

58
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Interpretation, Classifiers

§ Classifiers are interpreted as sets of things in the universe.
– (the sets are not in the universe) 60

Universe

Model

Using a
metamodel

Interpreting a
model

Set Δ

Metamodel Type Classifier

Set of 
classifiers

Interpretation
function ( ⋅T ) to 
sets of things

VC ⊆ VT



Interpretation, Classifiers, 
Example

§ Car is interpreted as a set of real or virtual things. 61

Universe

Model

Using a
metamodel

Interpreting a
model

Metamodel Type Classifier

Interpretation
function ( ⋅T ) to 
sets of real or 
virtual cars

Car

Car ∈ VC
(Car)T ⊆ Δ

Set of car things

A classifier



vcg

specific
1

general
1

Interpretation,Generalization
Classifier 

§ Car’s interpretation is a subset of Vehicle’s. 62

Universe

Model

Using a
metamodel

Interpreting a
model

Meta
model Classifier

Interpretation function 
( ⋅T ) to sets of real or 
virtual vehicles, 
including cars

Generalization

Vehicle

Type

A generalization

vcg.general = Vehicle
vcg.specific = Car

(Car)T ⊆
(Vehicle)T

Set of car things is a
subset of the set of
vehicle things

∗

∗

Car



Pairs of (Things in the Universe)

§ Every pair of anything, no restrictions on pairing, 
don’t know anything about the pairings, etc.
§ For interpreting relationships between things. 63

All pairs of
all things

in the universe
(not in the universe)

Metamodel

Model

Using a
metamodel

Interpreting a
model

(●,●)

(●,●)

(●,●)

(●,●)

(●,●)

(●,●)

(●,●)
(●,●)

(●,●)
(●,●)

(●,●)

(●,●)

(●,●)

Δ×Δ

Set of pairs



Interpretation, Features

§ Features are interpreted as sets of pairs of things 
in the universe. 

64
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Using a
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Interpretation, Features, 
Example

§ rollsOn is interpreted as sets of pairs of real or 
virtual cars and wheels. 65

All pairs of 
all things

in the universe

Model

Using a
metamodel

Interpreting a
model

Metamodel Type
Classifier

Interpretation function 
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Car rollsOn
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(       ,   )

(       ,   )
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⊆ Δ×Δ
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Set of rollsOn pairs



Interpretation,Generalization
Feature 

§ impel’s interpretation is a subset of rollsOn’s. 66

Model

Using a
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Interpreting a
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Meta
model Type Feature

impelsrollsOn rig
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all things in
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Interpretation function 
( ⋅T ) to pairs of real 
or virtual cars and 
wheels

(●,●)

(●,●)

(●,●) (●,●)

(●,●)

(      ,   )(      ,   ) (      ,  )
(      ,   )

(      ,  )

(      ,   )

A generalization

rig.general = rollsOn
rig.specific = impels

(impels)T ⊆
(rollsOn)T

specific
1

general
1Generalization

∗

∗

Set of impels pairs
is a subset of the set of
rollsOn pairs



1

special
Generalization Math

§ Generalization = subsetting interpretations 67

7.3.2 Types  7.3.2.4 Semantics
1. All sequences in the interpretation of a Type are in the interpretations of its generalizing Types.

∀ tg , ts∈VT tg ∈ ts.generalization.general ⇒ (ts)T ⊆ (tg)T

generalization
∗

Generalization

∗

how model
constrains

real or virtual
things

Statement that must be true
∀: For all possible values of the variablesVariables

if  then

Type

general
1

Variable values
must be types

(from a model)
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§ Summary 68



Visual Nesting ≠ Class/Property Modeling

§ Structure diagrams same as class diagramns
– as far as visual nesting goes. 69

Model

Car
structure

rollsOn : Wheel
structure =

rotateAround : Hub
rimFix : LugBolt

Hub

Wheel

Car

Hub

Wheel

rotate
Around

LugBolt
rimFix

pkg Classes

rollsOn



Visual Nesting ≠ Class/Property Modeling

§ Don’t want
– All hubs to use lock lugbolts.
– All wheels to have hubs with lock lugbolts.

§ Just the hubs in wheels that are in cars. 70

Model =

Hub

Hub

Wheel

rotate
Around

Two views of same 
model element LockLugBolt

rimFix

Wheel

Car

rollsOn

Car
structure

rollsOn : Wheel
structure

rotateAround : Hub
rimFix : LockLugBolt



Visual Nesting ≠ Class/Property Nesting

§ Doesn’t matter how class diagrams are drawn
71

Model = rollsOn

Wheel

Car

Hub LockLugBolt
rimFix

rotate
Around

Car
structure

rollsOn : Wheel
structure

rotateAround : Hub
rimFix : LockLugBolt



Visual Nesting ≠ Class/Property Modeling

§ Need new specialized classes all the way down the 
chain of properties. 72

Model

rollsOn

Hub

Car

=

Lock
LugBolt

rimFix

LockLB
Wheel Wheel

LugBoltrimFix

rotate
Around

Car
structure

rollsOn : LockLBWheel
structure

rotateAround : LockLBHub
rimFix : LockLugBolt

LockLB
Hub



Variation Modeling

§ Need classes all the way down for all variants.
73

Model

Car

SedanSportsCar SUV

Has snow
tires

Has big 
wheels

Has lock
lugbolts

SysML 1.4 Variant WG Archive http://www.omg.org/members/sysml-rtf-wiki/doku.php?id=rtf4:groups:variant:variants_modeling



SysML 1.x Bound References

§ Bind new top-level property to nested one.
– Restrict top-level property

§ Pro: No new classes needed.
§ Cons:

– Restrictions on nested elements are at top-level.
– Multiplicity restrictions count over all nested values. 74

Car
structure

= Binding means end property 
values are the same.
Restrictions on one apply to the 
other.

rollsOn : Wheel
structure

rotateAround : Hub
rimFix : LugBolt

rollsOn-
rotateAround-

rimFix : LockLugBolt



SysML 1.x Property Paths, Multiplicity

§ Bound values are found by “navigation” from each car.
– Right end would be all lugbolts of hubs on all wheels.

§ Don’t want multiplicity on bound reference to count all LBs.
– Just the ones on each wheel. 75

Nested connector end 
has property path:
( rollsOn, rotateAround, rimFix )

Car
structure

=

rollsOn : Wheel [4]
structure

rotateAround : Hub
rimFix : LugBolt

rollsOn-
rotateAround-

rimFix : LockLugBolt
[6]

SysML 1.4 Variant WG Archive http://www.omg.org/members/sysml-rtf-wiki/doku.php?id=rtf4:groups:variant:variants_modeling



SysML 1.x PropertyPaths, Interpretation

§ Bound reference links cars to their lugbolts
– It can restrict type of lugbolt. 76

Model

Interpreting a
model

rim
Fix

rolls
On

(●,●)

(●,●)

(●,●)

Propertiesrotate
Around

rollsOn-
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(       ,    )
(    ,     )

(     ,     )

(       ,    )
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(●,●)

Interpretation function 
( ⋅ T ) to pairs of real 
or virtual cars and 
lugbolts
( rollsOn ; rotateAround ;

rimFix )

Some pairs 
of things in

the universe
(one wheel)

(     ,     )
(       ,    )(     ,     )

(●,●)



SysML 1.x PropertyPaths, Interpretation

§ Bound reference links cars to all their lugbolts
– Restrictions apply to all hubs of all wheels.
– Maybe OK for type, but probably not for multiplicity. 77

Model

Interpreting a
model

rim
Fix

rolls
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(●,●)(●,●)

(●,●)

Propertiesrotate
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rollsOn-
rotateAround-

rimFix
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(     ,     )
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(●,●)

(●,●)

(     ,     )
(       ,    )(     ,     )

(●,●) Interpretation function 
( ⋅ T ) to pairs of real or 
virtual cars and 
lugbolts
( rollsOn ; rotateAround ;

rimFix )

More pairs 
of things in

the universe
(another 

wheel)



“Nested” Features, Interpretation

§ Lugbolts paired with sequences of “navigations” to each.
– Restrictions apply to each hub separately.
– Works for types and multiplicity.

78

( ( ,    ,     ) , )
( ( ,    ,     ) , )

( ( ,    ,     ) , )
( ( ,    ,     ) , )
( ( ,    ,     ) , )

( ( ,    ,     ) , )
Pairing 

things with 
sequences 

of things in the 
universe 

(two wheels)

rollsOn : Wheel

rotateAround : Hub

rimFix : LugBolt
Model

Interpreting a
model

Feature
“navigation”
starting from 
each car to 
its lugbolts.

C
ar



Less “Nested” Features, Interpretation

§ Hubs paired with sequences “navigating” to each.
79

( ( ,    ) , )
( ( ,    ) , )

Model

Interpreting a
model

( ( ,    ) , )
( ( ,    ) , )

Pairing 
things with 

pairs of things 
in the universe 

(two wheels)

rollsOn : Wheel

rotateAround : Hub

C
ar

Feature “navigation”
starting from each
car to hubs.



C
ar

SysML 2 Less “Nested” Features, Interpretation

§ Hubs at end of sequences “navigating” to them.
– No nested pairs. 80

Sequences of 
things in the 

universe 
(four wheels)

Model

Interpreting a
model

(      ,   ,    )
(      ,   ,    )(      ,   ,    )

(      ,   ,    )

rollsOn : Wheel

rotateAround : Hub

Feature “navigation”
starting from each
car to hubs.



SysML 2 “Nested” Features, Interpretation

§ Lugbolts at end of sequences “navigating” to them. 81

(      ,   ,   ,    )

Model

Interpreting a
model

(      ,   ,   ,    )
(      ,   ,   ,    )
(      ,   ,   ,    )
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(two wheels)

(      ,   ,   ,    )

rollsOn : Wheel

rotateAround : Hub

rimFix : LugBolt

C
ar

Feature
“navigation”
starting from 
each car to its 
lugbolts.



SysML 2 “Features as Classifiers” ?

§ Nested rotateAround sequences identify a subset of hubs
– … without additional classes. .82

(       ,    ,    ,    )
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Interpreting a
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hubs.



SysML 2 “Features as Classifiers” ?

§ Classifiers interpreted as sequences
– of single things, eg, hubs.
– leading to those things (nested features)

83
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SysML 2 Features, Classifiers as Types

§ Metamodel : Feature , Classifier are disjoint
§ Model :  Features, Classifiers are not. 84

Type
specific

featuredOn

Classifier Feature

Model
«classifier»

HubC
ar

rollsOn : Wheel

rotateAround : Hub

Model

Using a
metamodel

Meta
model

FeatureTyping

typeOfValue

general
Generalization



SysML 2 Interpretation

§ Links model elements to sets of sequences of 
things in the universe. 85

All sequences
of things in the 

universe

Model

Using a
metamodel

Interpreting a
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Set  S = ∪i∈ℤ+ Δi

Metamodel Type
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(  ,  )

Interpretation
function (⋅ T ) to 
sets of sequences 
of things



Sequence Interpretation, Features

§ Feature sequences are longer than one.
– They relate (“lead”/”navigate” from/to) things in the universe.86

7.3.4  Features   7.3.4.4 Semantics
1. The interpretations of features must have length greater than one.

∀ f ∈VF , s∈( f )T length(s) > 1

StatementVariables

  

Sequences for
those features

Values of f
must be features

(from a model)



Sequence Interpretation, Classifiers

§ Classifier sequences longer than one (= feature sequences) 
imply the ending 1-sequence is included. 87

7.3.3  Classifiers    7.3.3.4 Semantics
1. If the interpretation of a Classifier includes a sequence, it also includes the 1-tail of that sequence.

∀c∈ VC , s1 ∈ (c)T, s2∈ S    tail(s2 , s1) ∧ length(s2) = 1 ⇒ s2 ∈ (c)  

StatementVariables

if  thenSequences for
those classifiers

Values of c
must be 
classifiers
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The “O” Word
§ Has many meanings

– Can spend more time defining it than doing it.
§ Two meanings used in this presentation:

1. Start with the things being modeled (real, desired, 
imagined, simulated, etc).

2. Group (classify) those things by their commonalities.

89



OWL (Web Ontology Language)
§ Interchange standard for a kind of description logic (DL).

– Arrived at after decades of (early, not statistical) AI research 
• Formalizing commonly needed information/knowledge

– Started without logic (eg, “semantic nets”)
– Eventually reduced to named FOL patterns

• OWL = SROIQ(D)

§ DL letters
– I = Inverse properties   ∀ x , y    p1(x , y) ⇔ p2(y , x)
– S includes

• Concept intersection ∀ x c1(x) ⇔ c2(x) ∧ c3(x)
• Transitive roles   ∀ x , y , z   p(x , y) ∧ p(y , z) ⇒ p(x , z) 90



UML/SysML1 Outside SROIQ/OWL
§ Connectors between 

ports and other nested 
properties.

§ Property redefinition 
that “changes” the 
name.

91

https://www.nist.gov/publications/reasoning-manufacturing-part-part-examples-owl-2

Car
structure

: Engine
: Crank
shaft

: Wheel
: Hub

Vehicle
Power

Transmitter

rollsOn
{redefines

impeller}

Car Wheel

PropellorBoat
propelledBy

{redefines
impeller}

impeller

rr

https://www.nist.gov/publications/reasoning-manufacturing-part-part-examples-owl-2


SST Outside SROIQ/OWL 

§ Redefinition of multiplicity on nested features.
– Can’t restrict number of lugbolts on each hub.
– Can redefine multiplicity (and type) for all lugbolts. 92

rollsOn : Wheel

rotateAround : Hub

rimFix : LugBolt [4]

C
ar



OWL ≠ “S”  (or “O”)

§ Is this UML semantics?
– No, it’s syntax specified in an “S/O” language. 93

Declaration( Class( Behavior ) )
Declaration( Class( Activity ) )
Declaration( Class( ActivityNode ) )
Declaration( Class( ActivityEdge ) )
Declaration( ObjectProperty( node ) )
Declaration( ObjectProperty( edge ) )

SubClassOf( Activity Behavior )
ObjectPropertyDomain ( node Activity )
ObjectPropertyRange ( node ActivityNode )
ObjectPropertyDomain ( edge Activity )
ObjectPropertyRange ( edge ActivityEdge )

UML Metamodel (M2)

Behavior

edgenode

Activity
Edge

Activity
Node

Activity

OWL
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Summary, SE and Analysis
§ System engineers interact with domain engineers

– who regularly use mathematical tools to predict system 
behavior.

– SEs need these tools also to check domain analysis results.
§ Language designers and analysis tool builders have

– expectations for system construction / operation ...
– … coordinated through a standards specifications.

95



Summary, Syntax & Semantics
§ Syntax specifies models
§ Semantics + models specify real or virtual things

– Enables checking those things against the model.
– Conformance (checking) = classification (yes/no).

§ Specifying semantics
– Constraints that (kinds of) model elements place on 

classifying (pairs of) things in a hypothetical universe.

96



Summary, SysML 2
§ Semantic framework, motivation

– Classifying sequences of things in a hypothetical universe ...
– … to model subsets of things reached by feature “navigation” …
– … without additional classes.  Facilitates variation modeling.

§ Features and Classifiers
– Features interpreted as sequences longer than one.
– Classifiers interpreted as sequences of exactly one thing + …
– … all feature sequences ending in those things.
– Enables features to be “classifers” for other (“nested”) features.
– Kinds of feature values (typing) = Generalization 97



Other Information
§ OWL 2 Direct Semantics

– https://www.w3.org/TR/owl2-direct-semantics/

§ Introduction to Reasoning
– Section 3.1 in Bock, et al, “Evaulating Reasoning Systems,” 

NISTIR 7310 https://www.nist.gov/publications/evaluating-reasoning-systems

§ SysML 1.4 Variant WG Archive
– http://www.omg.org/members/sysml-rtf-wiki/doku.php?id=rtf4:groups:variant:variants_modeling

– Scroll down for literature and presentations.
– Discussion deck: http://tinyurl.com/ybxlc2wy 

• Bound references on slides 12-44.
98

https://www.omg.org/members/sysml-rtf-wiki/lib/exe/fetch.php?id=rtf4%3Agroups%3Avariant%3Avariants_modeling&cache=cache&media=rtf4:groups:variant:variant-wg-130619a.ppt

https://www.w3.org/TR/owl2-direct-semantics/
https://www.nist.gov/publications/evaluating-reasoning-systems
http://www.omg.org/members/sysml-rtf-wiki/doku.php?id=rtf4:groups:variant:variants_modeling
http://tinyurl.com/ybxlc2wy
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