
(SysML 2/SST)
Semantics with a Little Math

Conrad Bock
U.S. National Institute of Standards and Technology

Ed Seidewitz
Model Driven

Overview
§ Motivation / Problem : Analysis

– Systems Engineering
– Modeling Languages

§ Solution
– The “S” Words
– Standardizing Semantics
– Conformance = Classification
– Formalizing Semantics (ie, a little math)
– SysML 2 Semantics

§ The “O” Word
§ Summary 2

Overview
§ Motivation / Problem : Analysis

– Systems Engineering
– Modeling Languages

§ Solution
– The “S” Words
– Standardizing Semantics
– Conformance = Classification
– Formalizing Semantics (ie, a little math)
– SysML 2 Semantics

§ The “O” Word
§ Summary 3

System Engineers

§ System engineers coordinate with all the other engineers
– To produce a manufacturable design that will probably work. 4

System
Engineers

Electrical
Engineers

Hydraulic
Engineers

Mechanical
Engineers

Material
Engineers

Production
Engineers

Control
Engineers

Customers
Buildable

System Design
That Will

Probably Work

Getting to “Will Probably Work”

§ Domain engineers have mathematical tools for predicting
how systems will behave. 5

System
Engineers

Electrical Hydraulic Mechanical

Material Production Control

Domain-specific
Engineering

Analysis Tools

Engineering Analysis

§ Analyzers “imitate in advance” how real systems
will be constructed, operated, and behave. 6

Real or Virtual
Things being

specified
(as simulated,

constructed,operated)

Analyzing a
Model

System model

Building to a
Model

predicts

SE and Engineering Analysis?

§ SEs need their own analysis tools to compare
predicted behavior with domain engineers. 7

Electrical

Hydraulic
Mechanical

Material

Production Control

Buildable
System Design

That Will
Probably Work

SE Analysis Tools?

Overview
§ Motivation / Problem : Analysis

– Systems Engineering
– Modeling Languages

§ Solution
– The “S” Words
– Standardizing Semantics
– Conformance = Classification
– Formalizing Semantics (ie, a little math)
– SysML 2 Semantics

§ The “O” Word
§ Summary 8

Modeling

9

Language Developers
(using example models)

assoc BinaryLink specializes Link {
feature participant: Anything[2] nonunique
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant; // pairs of links

What are they imagining
for system operation?

Modeling Analysis

10

Language Developers
(using example models)

assoc BinaryLink specializes Link {
feature participant: Anything[2] nonunique
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant; // pairs of links

Analysis Tool Builders
(incl execution, simulation,

reasoning, etc)
assoc BinaryLink specializes Link {

feature participant: Anything[2] nonunique
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant; // pairs of links

What should tools predict for
system operations?

What are they imagining for
system operation?

assoc BinaryLink specializes Link {
feature participant: Anything[2] nonunique
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant; // pairs of links

Modeling and Analysis

11

Analysis Tool Builders
(incl execution, simulation,

reasoning, etc)

Language Developers
(using example models)

Communicate only
through a standards spec

assoc BinaryLink specializes Link {
feature participant: Anything[2] nonunique
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant; // pairs of links

What should tools predict for
system operations?

What is imagined for
system operation?

Don’t know each other

<xmi:XMI xmi:uml=http://www.omg.org/spec/UML/20110701>
<packagedElement xmi:type="uml:Class" name="Circuit">

<ownedAttribute xmi:type="uml:Property” name="r"
type="_17_0_2_1_8340219_1386362605823_957929_2536“/>

<ownedAttribute xmi:type-"uml:Property” name="c"
type="_17_0_2_1_8340219_1386362584651_224589_2534“/>

<owned.Attr~bute xm1:type="uml:Property" name="i"
type="_17_0_2_1_8340219_1386362591582_80360_2535“/>

<ownedConnector xmi:type-"uml:Connector“/>
<ownedConnector xmi:type-"uml:Connector“/>
<ownedConnector xmi: type-"uml :Connector“/>
<ownedConnector xmi:type-"uml:Connector“/>

</packagedElement>
<packagedElement xmi:type-"uml:Class" name="Source“/>
<packagedElement xmi:type-"uml:Class" name="Ground“/>
<packagedElement xmi:type-"uml:Class" name="Capacitor“/>
<packagedElement xmi:type-"um1:Association“/>
<packagedElement xmi:type="um1:Assoc1ation“/>
</uml:Model>
</xmi>

Modeling Language Lifecycle

12

assoc BinaryLink specializes Link {
feature participant: Anything[2] nonunique
end feature source: Anything[0..*] nonunique
end feature target: Anything[0..*] nonunique

feature sourceParticipant: Anything[1] subsets
supersets targetParticipant; // pairs of links

System
buildersStandards

definers
Tool builders Tool users

Feedback

Effect

C
on

st
ru

ct
io

n
C

on
tr

ol
 &

M
oi

ni
to

rin
g

Modeling Languages, Part 1

§ Modeling tools follow a language standard
– Often using (standard) model libraries

13

Information model /
modeling language

standard

Using a
Modeling Language

System
model

§ Domain
graphics:

§ Text
– Reserved
– Order

§ Domain terms:
– Lathes, Feeders
– Drying, Shaping

§ Using terms:
– Connect a feeder

to a lathe

§ Graphics:
– Circles
– Lines
– Rectangles
§ Text

– Reserved
– Order

§ Linguistic terms:
– Blocks, Item Flows
– Activity, Interaction

§ Using terms:
– Make an activity the

behavior for a block

reuses

Domain library

Specifies
models

1

predicts

Information model /
modeling language

standard

Using a
Modeling Language

System
model

§ Domain
graphics:

§ Text
– Reserved
– Order

§ Domain terms:
– Lathes, Feeders
– Drying, Shaping

§ Using terms:
– Connect a feeder

to a lathe

§ Graphics:
– Circles
– Lines
– Rectangles
§ Text

– Reserved
– Order

§ Linguistic terms:
– Blocks, Item Flows
– Activity, Interaction

§ Using terms:
– Make an activity the

behavior for a block

reuses

Domain library

Real or Virtual
Things being

specified
(as simulated,

constructed,operated)

Analyzinga
Model

Building to a
Model

Modeling Languages, Parts 2 & 3

14

Specifies real or
virtual things

Specifies
models 1

2
3

Example: Natural Language

15

Specifies real or
virtual things

Specifies
sentences 1

2

Grammar

Using a
Natural Language

Sentences
reuses Vocabulary

Describes

Sentence

Noun
Phrase

Verb
Phrase

Determiner
Noun
Verb
Noun
Phrase

“A quick brown
fox jumps over a

lazy dog.”

§ Verbs
– climb
– drive

§ Alphabet:
§ Word order
§ Kinds of words
§ Using words

Real or Virtual
Things being

described
No nouns and

verbs here

§ Nouns
– mountain
– road

3

Example: SysML/UML

16

Specifies real
or virtual

things

Specifies
SysML

models 1

2

UML Metamodel
/ SysML stereotypes

Using SysML

System
Model reuses

Describes

§ Blocks
§ Activities
§ Actions
§ Control Flow

Real or Virtual
Things being

described
No blocks and

flows here

§ Behaviors
– Paint
– Dry

act Manufacture

Paint Dry

Domain library

Time

Dry

Paint

Manufacture

3

Models ≠ Things Being Modeled

§ Models are not in time (compare to model versioning)
17

System
Model

Describes

act Manufacture

Paint Dry

Time

Dry

Paint

Manu-
facture Three

paints, dries
at separate

times

Two
paints, dries
at separate

times

One
paints, dries
at separate

times

Two roundtangles,
at the same time

2 A painting
happening
before a drying.

No Blocks on the Tarmac

18Pilot

O
M

G
er

Where are
the blocks?
Item flows?

The “L” Word
§ “Language”
§ Usually interpreted as = vocabulary

– Spoken/written words, eg, “plane”, “bonjour”, etc.
§ In software/OMG circles = reserved words

– Words defined in standard, eg, “block”, “if then”, etc.
– Reserved = can only be used as specified.
– Not vocabulary in the usual sense.

§ Formal language theory
– Coming up!

19

A Map is not the Territory

20
https://en.wikipedia.org/wiki/Alfred_Korzybski

No contour linesContour lines
(constant elevation)

https://en.wikipedia.org/wiki/Alfred_Korzybski

Magritte

21
https://en.wikipedia.org/wiki/The_Human_Condition_(Magritte)

https://en.wikipedia.org/wiki/The_Human_Condition_(Magritte)

Magritte
at OMG

22

If You Don’t Get This …
§ … it’s OK!
§ Only a small number of computer folks do

– They write compilers for programming languages
§ It’s capital equipment

– For producing useful analysis software
§ But the rest of this presentation might be confusing

– and it might not be clear why systems engineering
languages can’t succeed without it, because …

– … SEs won’t be able to interact with domain-specific
engineers, who all use analysis tools. 23

Overview
§ Motivation / Problem : Analysis

– Systems Engineering
– Modeling Languages

§ Solution
– The “S” Words
– Standardizing Semantics
– Conformance = Classification
– Formalizing Semantics (ie, a little math)
– SysML 2 Semantics

§ The “O” Word
§ Summary 24

Technical Terms for Parts 1 & 2

25

Semantics
specifies real
or virtual

things

Syntax
specifies

models
1

2

Inverse Terms for Parts 1 & 2

§ Conformance is a
yes/no question. 26

Real or
virtual things
conform

to semantics
(or not)

Models
conform

to syntax
(or not)

1

2

The (second) “S” Word
§ One meaning used here: how to tell when …
§ a real or virtual thing (as constructed and operated) …
§ “follows” (conforms to) a model …
§ … written in a particular language.

§ “How to tell” =
– procedure resulting in true or false when applied to real or

virtual thing/operation.
– Based on conditions that must be met by operated thing.

§ Compare to
– Application vocabulary (lathes, drills, etc).
– Model development methods (requirements, designs). 27

Checking Semantics

§ How do we know whether real or virtual things built
& operated to a model follow the model?
§ = Semantics (a boolean check) 28

Things being
specified

(as constructed
& operated)

Interpreting a
Model

Engineering
model

? Yes / No
(Semantics)

Producing Real/Virtual Things from Models

29

M
od

el

Real or virtual
things being

modeled

Interpreting a
Model

O
pe

ra
tio

ns
Engineering

model

? Yes / No
(Semantics)Produce Real or Virtual

Operational Thing

§ Producing real/virtual things is difficult.
– Checking these things (using semantics) is easy.

SE: Requirements, Designs, Tests

§ Do real/virtual systems meet requirements when
built and operated according to a design? 30

Produce

Requirements
on rockets

Design
for rocketsM

od
el

Real or virtual
things being

modeled

Interpreting a
Model

O
pe

ra
tio

ns

Engineering
model

Test4

1 2

3

Language Specs & Implementations

§ Do analysis tools “meet” the language spec? 31

M
od

el

Real or virtual
things being

modeled

Using a
Metamodel

O
pe

ra
tio

ns

Engineering
model

Semantic
Test4

Interpreting a
Model

Language
Specification Modeling

Tools
1 2

3Analysis
Tools

Systems Engineering for Languages
§ SE involves multiple kinds of specifications:

– Intended effects of a language (requirements ↔ semantics)
– How models bring about effects (designs ↔ analysis tools)
– Testing whether real/virtual systems have the required effects

when built/operated per a model (tests ↔ semantic checking).

33

Systems Engineering Modeling Languages
Requirements Semantics

Designs Analysis Tools

Tests Semantic Checking

SST: Standardize Checking, Not Production
§ Many ways to create and analyze models based on a

standard language
– Many ways to design a system to meet requirements

§ OMG doesn’t specify how to create models
– Just how to interchange and access them (syntax/API).

§ It shouldn’t specify how to analyze them either
– Just how to tell when results are correct (semantic check).

34

Technical Term: Inference
§ Produce real or virtual things

– Execution
• Incremental creation, usually deterministic

and time ordered.
– Simulation

• Less deterministic execution.
• Aggregate measures of probable executions.

– Reasoning
• Search based directly on semantics.

36

Kinds of inference
(logically speaking)

Se
e

Se
ct

io
n

3.
1

(In
tro

 to
 R

ea
so

ni
ng

)
in

 B
oc

k,
 e

t a
l,

“E
va

ul
at

in
g

R
es

on
in

g
Sy

st
em

s,
”

N
IS

T
73

10
 h

ttp
s:

//w
w

w
.n

is
t.g

ov
/p

ub
lic

at
io

ns
/e

va
lu

at
in

g-
re

as
on

in
g-

sy
st

em
s

§ Inference procedures are evaluated by whether results
§ Always pass semantic check (soundness).
§ Include everything that can pass it (completeness).
§ Can be produced (how) quickly (complexity).

from models = inference

https://www.nist.gov/publications/evaluating-reasoning-systems

Overview
§ Motivation / Problem : Analysis

– Systems Engineering
– Modeling Languages

§ Solution
– The “S” Words
– Standardizing Semantics
– Conformance = Classification
– Formalizing Semantics (ie, a little math)
– SysML 2 Semantics

§ The “O” Word
§ Summary 37

Standardizing Conformance, Syntactic

§ Typical “instance checking”
– between metamodel and model
– specified in the usual way (classes, properties, constraints)38

Information model /
modeling language

standard

System
model

reuses

Domain library

Syntactic
conformance

§ Graphics:
– Circles
– Lines
– Rectangles
§ Text

– Reserved
– Order

§ Linguistic terms:
– Blocks, Item Flows
– Activity, Interaction

§ Using terms:
– Make an activity the

behavior for a block

Using a
Modeling Language

System
model

reuses

Domain library

Standardizing Conformance, Semantic ?

39O
pe

ra
tio

ns

Interpreting a
specification

?

Semantic
conformance

§ Graphics:
– Circles
– Lines
– Rectangles
§ Text

– Reserved
– Order

§ Linguistic terms:
– Blocks, Item Flows
– Activity, Interaction

§ Using terms:
– Make an activity the

behavior for a block

Information model /
modeling language

standard

Using a
Modeling Language

Real or virtual
things being

modeled

?

System
model

reuses

Domain library

Checking Semantic Conformance, Manual

40

Real or virtual
things being

modeled

O
pe

ra
tio

ns

Interpreting a
specification

§ Graphics:
– Circles
– Lines
– Rectangles
§ Text

– Reserved
– Order

§ Linguistic terms:
– Blocks, Item Flows
– Activity, Interaction

§ Using terms:
– Make an activity the

behavior for a block

Modeling
language
standard

Using a
Modeling Language

Semantic conformance
checked manually

based on free text

Yes / No

?

System
model

reuses

Domain library

Checking Semantic Conformance, Autoish

41

Real or virtual
things being

modeled

O
pe

ra
tio

ns

Interpreting a
specification

§ Graphics:
– Circles
– Lines
– Rectangles
§ Text

– Reserved
– Order

§ Linguistic terms:
– Blocks, Item Flows
– Activity, Interaction

§ Using terms:
– Make an activity the

behavior for a block

Using a
Modeling Language

Yes / No

Semantic conformance
checked automatically

by tools built manually
based on free text

Modeling
language
standard

?

System
model

reuses

Domain library

Checking Semantic Conformance, More Auto

42

Real or virtual
things being

modeled

O
pe

ra
tio

ns

Interpreting a
specification

§ Graphics:
– Circles
– Lines
– Rectangles
§ Text

– Reserved
– Order

§ Linguistic terms:
– Blocks, Item Flows
– Activity, Interaction

§ Using terms:
– Make an activity the

behavior for a block

Using a
Modeling Language

Yes / No

Semantic conformance
checked automatically

by tools built manually
based on formal models

Modeling
language
standard

?

System
model

reuses

Domain library

Checking Semantic Conformance, Most Auto

43

Real or virtual
things being

modeled

O
pe

ra
tio

ns

Interpreting a
specification

§ Graphics:
– Circles
– Lines
– Rectangles
§ Text

– Reserved
– Order

§ Linguistic terms:
– Blocks, Item Flows
– Activity, Interaction

§ Using terms:
– Make an activity the

behavior for a block

Using a
Modeling Language

Yes / No
math /
logic

Semantic conformance
checked automatically

by tools built manually for
checking all formal models

Modeling
language
standard

System
model

reuses

Domain library

Standard Semantic Models

44

Real or virtual
things being

modeled

O
pe

ra
tio

ns

Interpreting a
specification

§ Graphics:
– Circles
– Lines
– Rectangles
§ Text

– Reserved
– Order

§ Linguistic terms:
– Blocks, Item Flows
– Activity, Interaction

§ Using terms:
– Make an activity the

behavior for a block

Using a
Modeling Language

Modeling
language
standard

§ What happens:
– Geometry changed
– Pieces mounted onto

machine
– Water removed

Semantic
conformance

Formal
elements

Syntactic
Conformance

R
euses a

standard
library

System
model

reuses

Domain library

Standard Semantic Models (SST)

45

Real or virtual
things being

modeled

O
pe

ra
tio

ns

Interpreting a
specification

§ Graphics:
– Circles
– Lines
– Rectangles
§ Text

– Reserved
– Order

§ Linguistic terms:
– Blocks, Item Flows
– Activity, Interaction

§ Using terms:
– Make an activity the

behavior for a block

Using a
Modeling Language

Modeling
language
standard

§ What happens:
– Geometry changed
– Pieces mounted onto

machine
– Water removed

Semantic
conformance

Core
Subset

Syntactic
Conformance

R
euses
SST

library

SST
Library

Overview
§ Motivation / Problem : Analysis

– Systems Engineering
– Modeling Languages

§ Solution
– The “S” Words
– Standardizing Semantics
– Conformance = Classification
– Formalizing Semantics (ie, a little math)
– SysML 2 Semantics

§ The “O” Word
§ Summary 46

Conformance = Classification

§ Things (structural and behavioral) that do/not conform
to (are/not classified by) their models 47

Time

Shoot

Focus

Take Picture

Camera

lensbody
Model
(M1)

Things
Being
Modeled
(M0)

TakePicture

ShootFocusmount

BehaviorStructure

Classification Synonyms

48

Classified by
Modeled by
Specified by
Conforms to
Follows
Satisfies (logically)

Not quite: “Instance of” (in the OO sense)
Not at all : “Execution of” (MES/software sense)

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Taxonomies

§ “Sub”classification …
§ …of real or virtual things.

49
http://mechanicalgalaxy.blogspot.com/2011/05/heat-exchangers-classification-types.html

Fin
Tube

SysML/UML
Generalization

Heat
Exchanger

Recuperative

Plate Tubular

Regenerative

ShellClusterCoilFin
Plate Spiral

Model
(M1)

Venn Diagrams

§ More accessible notation for taxonomies
– but less scalable.

50

Heat Exchangers

Recuperatives

Plates

Fin
Plates

Coils

Tubulars

Fin
Tubes

Overview
§ Motivation / Problem : Analysis

– Systems Engineering
– Modeling Languages

§ Solution
– The “S” Words
– Standardizing Semantics
– Conformance = Classification
– Formalizing Semantics (ie, a little math)
– SysML 2 Semantics

§ The “O” Word
§ Summary 51

Informal Semantics

52

From UML 2.5 Specification:

UML/SysML Generalization

How can this be specified more precisely?

Vehicle

Car

“Every instance of Car is an
instance of Vehicle”

iow
“Every Car is a Vehicle”

iow
“Cars are vehicles”

“Each instance of the specific
classifier is also an instance of
the general classifier”

= a single real or virtual thing

Mathematical Semantics

53

OWL SubClassof

From OWL 2 Direct Semantics:

Vehicles

Cars

subset of

SubClassOf (Car, Vehicle)

Axiom Condition
SubClassOf(CE1 CE2) (CE1)C ⊆ (CE2)C

OWL 2 Direct Semantics https://www.w3.org/TR/owl2-direct-semantics/

SST and OWL
§ Most of SST semantics is equivalent to OWL.

– Emulated its style and notation.
– Exceptions covered in the next section.

§ This section covers SST as it overlaps OWL
– uses some SST terms …
– … with OWL semantics and notation conventions.

§ Next section updates semantics to SST.

54

Standardizing Semantic Conformance?

55

Using a
standard

Interpreting a
model

Sy
nt

ac
tic

C
on

fo
rm

an
ce

Checking operational
things against models,

but neither exist yet.

Yes / NoSystem
model

Real or virtual
things being

modeled

O
pe

ra
tio

ns
Modeling
language
standard

Universe

§ Everything, anything, no restrictions, don’t know
anything about them, how many, etc.
§ For interpreting models. 56

All things
(virtual, real,

imagined, never
existed …)

Metamodel

Model

Using a
metamodel

Interpreting a
model

Δ

Set

OWL 2 Direct Semantics https://www.w3.org/TR/owl2-direct-semantics/

Vocabulary, Types

§ Beginning of syntax for model elements.
– At least for elements affecting real & virtual things.

57

Universe

Metamodel

Model

Using a
metamodel

Interpreting a
model

Type

Set Δ

Set of
types

VT

Interpretation

§ Links model elements to (mathematical structures
made up of) things in the universe.

58

Universe

Model

Using a
metamodel

Interpreting a
model

Set Δ

Metamodel

Interpretation
function

Type

Set of
types VT

(∈VT)T

59

Interpretation

Mini-Glossary

Vocabulary

Sy
sM

L
2

M
at

h
Te

rm
s

Interpretation, Classifiers

§ Classifiers are interpreted as sets of things in the universe.
– (the sets are not in the universe) 60

Universe

Model

Using a
metamodel

Interpreting a
model

Set Δ

Metamodel Type Classifier

Set of
classifiers

Interpretation
function (⋅T) to
sets of things

VC ⊆ VT

Interpretation, Classifiers,
Example

§ Car is interpreted as a set of real or virtual things. 61

Universe

Model

Using a
metamodel

Interpreting a
model

Metamodel Type Classifier

Interpretation
function (⋅T) to
sets of real or
virtual cars

Car

Car ∈ VC
(Car)T ⊆ Δ

Set of car things

A classifier

vcg

specific
1

general
1

Interpretation,Generalization
Classifier

§ Car’s interpretation is a subset of Vehicle’s. 62

Universe

Model

Using a
metamodel

Interpreting a
model

Meta
model Classifier

Interpretation function
(⋅T) to sets of real or
virtual vehicles,
including cars

Generalization

Vehicle

Type

A generalization

vcg.general = Vehicle
vcg.specific = Car

(Car)T ⊆
(Vehicle)T

Set of car things is a
subset of the set of
vehicle things

∗

∗

Car

Pairs of (Things in the Universe)

§ Every pair of anything, no restrictions on pairing,
don’t know anything about the pairings, etc.
§ For interpreting relationships between things. 63

All pairs of
all things

in the universe
(not in the universe)

Metamodel

Model

Using a
metamodel

Interpreting a
model

(●,●)

(●,●)

(●,●)

(●,●)

(●,●)

(●,●)

(●,●)
(●,●)

(●,●)
(●,●)

(●,●)

(●,●)

(●,●)

Δ×Δ

Set of pairs

Interpretation, Features

§ Features are interpreted as sets of pairs of things
in the universe.

64

Model

Using a
metamodel

Interpreting a
model

Metamodel

Interpretation
function (⋅ T) to
sets of pairs of
things

Type Feature

All pairs of
all things

in the universe
Set Δ×Δ of pairs
of things in the
universe

(●,●)

(●,●)

(●,●)

(●,●)

(●,●)

(●,●)

(●,●)(●,●)

(●,●)
(●,●)

(●,●)

(●,●)

(●,●)

VF ⊆ VT

Set of features

Interpretation, Features,
Example

§ rollsOn is interpreted as sets of pairs of real or
virtual cars and wheels. 65

All pairs of
all things

in the universe

Model

Using a
metamodel

Interpreting a
model

Metamodel Type
Classifier

Interpretation function
(⋅T) to sets of pairs of
real or virtual cars
and wheels

Car rollsOn

Feature

Wheel

Universe

(●,●)
(●,●)

(●,●) (●,●)

(,)(●,●)

(,)

(,)

(,)

rollsOn ∈ VF

(rollsOn)T

⊆ Δ×Δ

A feature

Set of rollsOn pairs

Interpretation,Generalization
Feature

§ impel’s interpretation is a subset of rollsOn’s. 66

Model

Using a
metamodel

Interpreting a
model

Meta
model Type Feature

impelsrollsOn rig

All pairs of
all things in

the universe

Interpretation function
(⋅T) to pairs of real
or virtual cars and
wheels

(●,●)

(●,●)

(●,●) (●,●)

(●,●)

(,)(,) (,)
(,)

(,)

(,)

A generalization

rig.general = rollsOn
rig.specific = impels

(impels)T ⊆
(rollsOn)T

specific
1

general
1Generalization

∗

∗

Set of impels pairs
is a subset of the set of
rollsOn pairs

1

special
Generalization Math

§ Generalization = subsetting interpretations 67

7.3.2 Types 7.3.2.4 Semantics
1. All sequences in the interpretation of a Type are in the interpretations of its generalizing Types.

∀ tg , ts∈VT tg ∈ ts.generalization.general ⇒ (ts)T ⊆ (tg)T

generalization
∗

Generalization

∗

how model
constrains

real or virtual
things

Statement that must be true
∀: For all possible values of the variablesVariables

if then

Type

general
1

Variable values
must be types

(from a model)

Overview
§ Motivation / Problem : Analysis

– Systems Engineering
– Modeling Languages

§ Solution
– The “S” Words
– Standardizing Semantics
– Conformance = Classification
– Formalizing Semantics (ie, a little math)
– SysML 2 Semantics

§ The “O” Word
§ Summary 68

Visual Nesting ≠ Class/Property Modeling

§ Structure diagrams same as class diagramns
– as far as visual nesting goes. 69

Model

Car
structure

rollsOn : Wheel
structure =

rotateAround : Hub
rimFix : LugBolt

Hub

Wheel

Car

Hub

Wheel

rotate
Around

LugBolt
rimFix

pkg Classes

rollsOn

Visual Nesting ≠ Class/Property Modeling

§ Don’t want
– All hubs to use lock lugbolts.
– All wheels to have hubs with lock lugbolts.

§ Just the hubs in wheels that are in cars. 70

Model =

Hub

Hub

Wheel

rotate
Around

Two views of same
model element LockLugBolt

rimFix

Wheel

Car

rollsOn

Car
structure

rollsOn : Wheel
structure

rotateAround : Hub
rimFix : LockLugBolt

Visual Nesting ≠ Class/Property Nesting

§ Doesn’t matter how class diagrams are drawn
71

Model = rollsOn

Wheel

Car

Hub LockLugBolt
rimFix

rotate
Around

Car
structure

rollsOn : Wheel
structure

rotateAround : Hub
rimFix : LockLugBolt

Visual Nesting ≠ Class/Property Modeling

§ Need new specialized classes all the way down the
chain of properties. 72

Model

rollsOn

Hub

Car

=

Lock
LugBolt

rimFix

LockLB
Wheel Wheel

LugBoltrimFix

rotate
Around

Car
structure

rollsOn : LockLBWheel
structure

rotateAround : LockLBHub
rimFix : LockLugBolt

LockLB
Hub

Variation Modeling

§ Need classes all the way down for all variants.
73

Model

Car

SedanSportsCar SUV

Has snow
tires

Has big
wheels

Has lock
lugbolts

SysML 1.4 Variant WG Archive http://www.omg.org/members/sysml-rtf-wiki/doku.php?id=rtf4:groups:variant:variants_modeling

SysML 1.x Bound References

§ Bind new top-level property to nested one.
– Restrict top-level property

§ Pro: No new classes needed.
§ Cons:

– Restrictions on nested elements are at top-level.
– Multiplicity restrictions count over all nested values. 74

Car
structure

= Binding means end property
values are the same.
Restrictions on one apply to the
other.

rollsOn : Wheel
structure

rotateAround : Hub
rimFix : LugBolt

rollsOn-
rotateAround-

rimFix : LockLugBolt

SysML 1.x Property Paths, Multiplicity

§ Bound values are found by “navigation” from each car.
– Right end would be all lugbolts of hubs on all wheels.

§ Don’t want multiplicity on bound reference to count all LBs.
– Just the ones on each wheel. 75

Nested connector end
has property path:
(rollsOn, rotateAround, rimFix)

Car
structure

=

rollsOn : Wheel [4]
structure

rotateAround : Hub
rimFix : LugBolt

rollsOn-
rotateAround-

rimFix : LockLugBolt
[6]

SysML 1.4 Variant WG Archive http://www.omg.org/members/sysml-rtf-wiki/doku.php?id=rtf4:groups:variant:variants_modeling

SysML 1.x PropertyPaths, Interpretation

§ Bound reference links cars to their lugbolts
– It can restrict type of lugbolt. 76

Model

Interpreting a
model

rim
Fix

rolls
On

(●,●)

(●,●)

(●,●)

Propertiesrotate
Around

rollsOn-
rotateAround-

rimFix

(,)

(,)
(,)

(,)

(,)

(●,●)

(●,●)

Interpretation function
(⋅ T) to pairs of real
or virtual cars and
lugbolts
(rollsOn ; rotateAround ;

rimFix)

Some pairs
of things in

the universe
(one wheel)

(,)
(,)(,)

(●,●)

SysML 1.x PropertyPaths, Interpretation

§ Bound reference links cars to all their lugbolts
– Restrictions apply to all hubs of all wheels.
– Maybe OK for type, but probably not for multiplicity. 77

Model

Interpreting a
model

rim
Fix

rolls
On

(●,●)(●,●)

(●,●)

Propertiesrotate
Around

rollsOn-
rotateAround-

rimFix

(,)

(,)
(,)

(,)

(,)
(●,●)

(●,●)

(,)
(,)(,)

(●,●) Interpretation function
(⋅ T) to pairs of real or
virtual cars and
lugbolts
(rollsOn ; rotateAround ;

rimFix)

More pairs
of things in

the universe
(another

wheel)

“Nested” Features, Interpretation

§ Lugbolts paired with sequences of “navigations” to each.
– Restrictions apply to each hub separately.
– Works for types and multiplicity.

78

((, ,) ,)
((, ,) ,)

((, ,) ,)
((, ,) ,)
((, ,) ,)

((, ,) ,)
Pairing

things with
sequences

of things in the
universe

(two wheels)

rollsOn : Wheel

rotateAround : Hub

rimFix : LugBolt
Model

Interpreting a
model

Feature
“navigation”
starting from
each car to
its lugbolts.

C
ar

Less “Nested” Features, Interpretation

§ Hubs paired with sequences “navigating” to each.
79

((,) ,)
((,) ,)

Model

Interpreting a
model

((,) ,)
((,) ,)

Pairing
things with

pairs of things
in the universe

(two wheels)

rollsOn : Wheel

rotateAround : Hub

C
ar

Feature “navigation”
starting from each
car to hubs.

C
ar

SysML 2 Less “Nested” Features, Interpretation

§ Hubs at end of sequences “navigating” to them.
– No nested pairs. 80

Sequences of
things in the

universe
(four wheels)

Model

Interpreting a
model

(, ,)
(, ,)(, ,)

(, ,)

rollsOn : Wheel

rotateAround : Hub

Feature “navigation”
starting from each
car to hubs.

SysML 2 “Nested” Features, Interpretation

§ Lugbolts at end of sequences “navigating” to them. 81

(, , ,)

Model

Interpreting a
model

(, , ,)
(, , ,)
(, , ,)

(, , ,)Sequences of
things in the

universe
(two wheels)

(, , ,)

rollsOn : Wheel

rotateAround : Hub

rimFix : LugBolt

C
ar

Feature
“navigation”
starting from
each car to its
lugbolts.

SysML 2 “Features as Classifiers” ?

§ Nested rotateAround sequences identify a subset of hubs
– … without additional classes. .82

(, , ,)

Model

Interpreting a
model

(, , ,)

Sequences of
things in the

universe
(two wheels)

rollsOn : Wheel

rotateAround : Hub

rimFix : LugBolt

C
ar

(, ,)(, ,)

rotateAroundrotateAround rimFixrimFix
Hubs in wheels

in cars

Feature
“navigation”
starting from
each car to
hubs.

SysML 2 “Features as Classifiers” ?

§ Classifiers interpreted as sequences
– of single things, eg, hubs.
– leading to those things (nested features)

83

Model

Interpreting a
model

Hub

() ()
() ()

Sequences of
things in the

universe
(four wheels)

(, ,)
(, ,)(, ,)

(, ,)

C
ar

rollsOn : Wheel

rotateAround : Hub

()

() () ()

() () ()

su
bs

et
 o

f h
ub

s
id

en
tif

ie
d

by

fe
at

ur
e

se
qu

en
ce

s
st

ar
tin

g
w

ith

SysML 2 Features, Classifiers as Types

§ Metamodel : Feature , Classifier are disjoint
§ Model : Features, Classifiers are not. 84

Type
specific

featuredOn

Classifier Feature

Model
«classifier»

HubC
ar

rollsOn : Wheel

rotateAround : Hub

Model

Using a
metamodel

Meta
model

FeatureTyping

typeOfValue

general
Generalization

SysML 2 Interpretation

§ Links model elements to sets of sequences of
things in the universe. 85

All sequences
of things in the

universe

Model

Using a
metamodel

Interpreting a
model

Set S = ∪i∈ℤ+ Δi

Metamodel Type

Set of
types VT

(∈VT)T

()
()

(, ,)
(,) (,)

()
(,)

(, ,)
()

(, , ,)
(,)

Interpretation
function (⋅ T) to
sets of sequences
of things

Sequence Interpretation, Features

§ Feature sequences are longer than one.
– They relate (“lead”/”navigate” from/to) things in the universe.86

7.3.4 Features 7.3.4.4 Semantics
1. The interpretations of features must have length greater than one.

∀ f ∈VF , s∈(f)T length(s) > 1

StatementVariables

Sequences for
those features

Values of f
must be features

(from a model)

Sequence Interpretation, Classifiers

§ Classifier sequences longer than one (= feature sequences)
imply the ending 1-sequence is included. 87

7.3.3 Classifiers 7.3.3.4 Semantics
1. If the interpretation of a Classifier includes a sequence, it also includes the 1-tail of that sequence.

∀c∈ VC , s1 ∈ (c)T, s2∈ S tail(s2 , s1) ∧ length(s2) = 1 ⇒ s2 ∈ (c)

StatementVariables

if thenSequences for
those classifiers

Values of c
must be
classifiers

Overview
§ Motivation / Problem : Analysis

– Systems Engineering
– Modeling Languages

§ Solution
– The “S” Words
– Standardizing Semantics
– Conformance = Classification
– Formalizing Semantics (ie, a little math)
– SysML 2 Semantics

§ The “O” Word
§ Summary 88

The “O” Word
§ Has many meanings

– Can spend more time defining it than doing it.
§ Two meanings used in this presentation:

1. Start with the things being modeled (real, desired,
imagined, simulated, etc).

2. Group (classify) those things by their commonalities.

89

OWL (Web Ontology Language)
§ Interchange standard for a kind of description logic (DL).

– Arrived at after decades of (early, not statistical) AI research
• Formalizing commonly needed information/knowledge

– Started without logic (eg, “semantic nets”)
– Eventually reduced to named FOL patterns

• OWL = SROIQ(D)

§ DL letters
– I = Inverse properties ∀ x , y p1(x , y) ⇔ p2(y , x)
– S includes

• Concept intersection ∀ x c1(x) ⇔ c2(x) ∧ c3(x)
• Transitive roles ∀ x , y , z p(x , y) ∧ p(y , z) ⇒ p(x , z) 90

UML/SysML1 Outside SROIQ/OWL
§ Connectors between

ports and other nested
properties.

§ Property redefinition
that “changes” the
name.

91

https://www.nist.gov/publications/reasoning-manufacturing-part-part-examples-owl-2

Car
structure

: Engine
: Crank
shaft

: Wheel
: Hub

Vehicle
Power

Transmitter

rollsOn
{redefines

impeller}

Car Wheel

PropellorBoat
propelledBy

{redefines
impeller}

impeller

rr

https://www.nist.gov/publications/reasoning-manufacturing-part-part-examples-owl-2

SST Outside SROIQ/OWL

§ Redefinition of multiplicity on nested features.
– Can’t restrict number of lugbolts on each hub.
– Can redefine multiplicity (and type) for all lugbolts. 92

rollsOn : Wheel

rotateAround : Hub

rimFix : LugBolt [4]

C
ar

OWL ≠ “S” (or “O”)

§ Is this UML semantics?
– No, it’s syntax specified in an “S/O” language. 93

Declaration(Class(Behavior))
Declaration(Class(Activity))
Declaration(Class(ActivityNode))
Declaration(Class(ActivityEdge))
Declaration(ObjectProperty(node))
Declaration(ObjectProperty(edge))

SubClassOf(Activity Behavior)
ObjectPropertyDomain (node Activity)
ObjectPropertyRange (node ActivityNode)
ObjectPropertyDomain (edge Activity)
ObjectPropertyRange (edge ActivityEdge)

UML Metamodel (M2)

Behavior

edgenode

Activity
Edge

Activity
Node

Activity

OWL

Overview
§ Motivation / Problem : Analysis

– Systems Engineering
– Modeling Languages

§ Solution
– The “S” Words
– Standardizing Semantics
– Conformance = Classification
– Formalizing Semantics (ie, a little math)
– SysML 2 Semantics

§ The “O” Word
§ Summary 94

Summary, SE and Analysis
§ System engineers interact with domain engineers

– who regularly use mathematical tools to predict system
behavior.

– SEs need these tools also to check domain analysis results.
§ Language designers and analysis tool builders have

– expectations for system construction / operation ...
– … coordinated through a standards specifications.

95

Summary, Syntax & Semantics
§ Syntax specifies models
§ Semantics + models specify real or virtual things

– Enables checking those things against the model.
– Conformance (checking) = classification (yes/no).

§ Specifying semantics
– Constraints that (kinds of) model elements place on

classifying (pairs of) things in a hypothetical universe.

96

Summary, SysML 2
§ Semantic framework, motivation

– Classifying sequences of things in a hypothetical universe ...
– … to model subsets of things reached by feature “navigation” …
– … without additional classes. Facilitates variation modeling.

§ Features and Classifiers
– Features interpreted as sequences longer than one.
– Classifiers interpreted as sequences of exactly one thing + …
– … all feature sequences ending in those things.
– Enables features to be “classifers” for other (“nested”) features.
– Kinds of feature values (typing) = Generalization 97

Other Information
§ OWL 2 Direct Semantics

– https://www.w3.org/TR/owl2-direct-semantics/

§ Introduction to Reasoning
– Section 3.1 in Bock, et al, “Evaulating Reasoning Systems,”

NISTIR 7310 https://www.nist.gov/publications/evaluating-reasoning-systems

§ SysML 1.4 Variant WG Archive
– http://www.omg.org/members/sysml-rtf-wiki/doku.php?id=rtf4:groups:variant:variants_modeling

– Scroll down for literature and presentations.
– Discussion deck: http://tinyurl.com/ybxlc2wy

• Bound references on slides 12-44.
98

https://www.omg.org/members/sysml-rtf-wiki/lib/exe/fetch.php?id=rtf4%3Agroups%3Avariant%3Avariants_modeling&cache=cache&media=rtf4:groups:variant:variant-wg-130619a.ppt

https://www.w3.org/TR/owl2-direct-semantics/
https://www.nist.gov/publications/evaluating-reasoning-systems
http://www.omg.org/members/sysml-rtf-wiki/doku.php?id=rtf4:groups:variant:variants_modeling
http://tinyurl.com/ybxlc2wy

	(SysML 2/SST)�Semantics with a Little Math
	Overview
	Motivation / Problem : Analysis
	Systems Engineering
	System Engineers
	Getting to “Will Probably Work”
	Engineering Analysis
	SE and Engineering Analysis?

	Modeling Languages
	 Modeling
	 Modeling Analysis
	 Modeling and Analysis
	Modeling Language Lifecycle
	Modeling Languages, Part 1
	Modeling Languages, Parts 2 & 3
	Example: Natural Language
	Example: SysML/UML
	Models ≠ Things Being Modeled
	No Blocks on the Tarmac
	The “L” Word
	A Map is not the Territory
	Magritte
	Magritte�at OMG
	If You Don’t Get This …

	Solution
	The “S” Words
	Technical Terms for Parts 1 & 2
	Inverse Terms for Parts 1 & 2
	The (second) “S” Word
	Checking Semantics
	Producing Real/Virtual Things from Models
	SE: Requirements, Designs, Tests
	Language Specs & Implementations
	Systems Engineering for Languages
	SST: Standardize Checking, Not Production
	Technical Term: Inference

	Standardizing Semantics
	Standardizing Conformance, Syntactic
	Standardizing Conformance, Semantic ?
	Checking Semantic Conformance, Manual
	Checking Semantic Conformance, Autoish
	Checking Semantic Conformance, More Auto
	Checking Semantic Conformance, Most Auto
	Standard Semantic Models
	Standard Semantic Models (SST)

	Conformance
	Formalizing Semantics
	Informal Semantics
	Mathematical Semantics
	SST and OWL
	Standardizing Semantic Conformance?
	Universe
	Vocabulary, Types
	Interpretation
	SysML 2 Math Terms
	Interpretation, Classifiers
	Interpretation, Classifiers, Example
	Interpretation, Generalization�Classifier
	Pairs of (Things in the Universe)
	Interpretation, Features
	Interpretation, Features, Example
	Interpretation, Generalization�Feature
	Generalization Math
	Conformance = Classification
	Classification Synonyms
	Taxonomies
	Venn Diagrams

	SysML 2 Semantics
	Visual Nesting ≠ Class/Property Modeling
	Visual Nesting ≠ Class/Property Modeling
	Visual Nesting ≠ Class/Property Nesting
	Visual Nesting ≠ Class/Property Modeling
	Variation Modeling
	SysML 1.x Bound References
	SysML 1.x Property Paths, Multiplicity
	SysML 1.x PropertyPaths, Interpretation
	SysML 1.x PropertyPaths, Interpretation
	“Nested” Features, Interpretation
	Less “Nested” Features, Interpretation
	SysML 2 Less “Nested” Features, Interpretation
	SysML 2 “Nested” Features, Interpretation
	SysML 2 “Features as Classifiers” ?
	SysML 2 “Features as Classifiers” ?
	SysML 2 Features, Classifiers as Types
	SysML 2 Interpretation
	Sequence Interpretation, Features
	Sequence Interpretation, Classifiers

	The “O” Word
	The “O” Word
	OWL (Web Ontology Language)
	UML/SysML1 Outside SROIQ/OWL
	SST Outside SROIQ/OWL
	OWL ≠ “S” (or “O”)

	Summary
	Summary, SE and Analysis
	Summary, Syntax & Semantics
	Summary, SysML 2
	Other Information

